(#438).TEORÍA DE PROBABILIDAD E INFERENCIA ESTADÍSTICA SEGÚN ARIS SPANOS (IIIe)

[MONOTEMA]  Avanzamos con el quinto apartado del tercer capítulo de Probability Theory and Statistical Inference, de Aris Spanos.

Parámetros y momentos

Además del histograma de la distribución de datos observados, también disponemos de ciertos números que caracterizan la distribución como la media o la varianza. Esos valores numéricos están relacionados con los momentos de la distribución, que son esperanzas matemáticas de ciertas funciones de la variable aleatoria , genéricamente denotadas por .

Si escogemos diferentes funciones  obtendremos diferentes momentos de la distribución. Por ejemplo:

Media 

Para variables continuas:

Para variables discretas:

Varianza

Una forma conveniente de calcular los momentos de una distribución es a través de la función generatriz de momentos (mgf), donde

Para variables aleatorias discretas las integrales se vuelven sumatorios.

Por ejemplo, para una variable aleatoria X que sigue una distribución de Poisson:

Dado que: 

Entonces:

A partir de los momentos de la distribución se puede estudiar la asimetría y el apuntamiento. De este modo, podemos caracterizar la forma de la distribución a partir de los momentos.

Todos los posts relacionados




(#437). TEORÍA DE PROBABILIDAD E INFERENCIA ESTADÍSTICA SEGÚN ARIS SPANOS (IIId)

[MONOTEMA] En esta cuarta entrega del tercer capítulo de Probability Theory and Statistical Inference, de Aris Spanos, seguimos profundizando en la relación entre espacio de probabilidad y modelo de probabilidad.

Cuando las probabilidades son funciones conocidas de ciertos parámetros desconocidos , entonces podemos transformar el espacio probabilístico en un modelo de probabilidad definido por:

donde  es una colección de funciones de densidad que dependen de un conjunto de parámetros  en el espacio paramétrico .

Podríamos usar también la función de distribución:

Pongamos un ejemplo usando la distribución Beta como modelo de probabilidad:

 

Podemos analizar el porcentaje de acierto en los tiros libres de los jugadores NBA hasta 2015 (el acumulado en sus respectivas carreras), para aquellos que hubieran lanzado al menos 30 tiros libres.

El histograma de la distribución es el siguiente:

data:read_list(file_search("RUTADELARCHIVO.txt"));
datatranspose:transpose(data);
estatura:datatranspose;
histogram (
estatura,
nclasses=15,
frequency=density,
xlabel="Espacio muestral. Porcentaje acierto tiros libres",
ylabel="Densidad de probabilidad",
fill_color=green,
fill_density=0.5);

Para ello nos ayudamos de nuevo de Stata 13.0, y estipulamos una distribución Beta de parámetros (18, 7.5). 

Es decir, para la modelización empírica debemos postular a priori una familia de densidades que refleje el mecanismo estocástico que da origen a los datos observados. Para ello, tiene espacial relevancia el rango de valores de la variable aleatoria.

Estamos todavía al comienzo, pero ya hemos intuido cómo se plantea un modelo de probabilidad.

Todos los posts relacionados