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Abstract. In this paper, a new distance measure called the Discriminant distance (Dd), which overcomes some of the shortcomings of other
distance measures and provides an easily understandable geometrical interpretation of distance between two variables, is evaluated. Dd
summarizes the information provided by Pearson’s r and Cohens’ d statistics in a single coefficient. In addition, confidence intervals can also be
computed. The Discriminant distance has values enclosed in a [0, 1) interval and it may be mainly used to study convergent and discriminant
validity, or scale invariance, when using continuous variables. A web-based computer program is provided to facilitate its computation. Finally,
conventions for interpreting Dd are discussed along with several limitations.
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The notion of distance is an important and widely used topic
in social and behavioral sciences, specifically in marketing
research. For example, the estimation of distance between
populations is an integral component of several multivariate
techniques for data analysis, including multidimensional
scaling or discriminant analysis (Bedrick, Lapidus, &
Powell, 2000). We can compute distances between vectors,
variables, or individuals, to provide a measure of separation
or proximity between them.

When the observed data are quantitative, there are differ-
ent types of distances that are used, depending on the
research aims. I agree with Abdi (2007) that some of the most
important distance measures are Euclidean, Mahalanobis,
Minkowsky, and the Hellinger distances. For the case of
studying the distance between two variables, all these dis-
tances can be computed by building two vectors of data
and certain constraints expressed by a weight matrix con-
formable with the vectors.

Following the continuous scenario, the absolute value of
Pearson’s r correlation coefficient can also be considered as a
measure of distance between variables, anchored in a [0, 1]
rank. Recall that two perfectly correlated variables are virtu-
ally the same variable from a statistical viewpoint,1 because
their degree of association is maximum (or the distance be-
tween them is minimum, i.e., 0), and just the opposite; two
uncorrelated variables are not associated, that is, their asso-
ciation is minimum (or the distance is maximum, i.e., 1).
Furthermore, the absolute values of the family of the stan-
dardized mean difference effect sizes, such as Cohen’s d,
are also distance measures, because when two variables
have the same mean, their distance is 0. Conversely, two

variables with divergent mean are separated to the extent
that means differ (weighted by standard deviation). In this
case, the upper bound of the separation is infinite. Therefore,
extending the concept of distance to r and d, we can see how
distance is a central topic in hypothesis testing and valida-
tion procedures, such as the analysis of convergent and dis-
criminant validity.

The aforementioned distance measures report different
information regarding proximity or separation between
two variables, but as I will show later, they fail to properly
take into account both mean difference and correlation
between them. In this paper, I have developed a new dis-
tance measure that I have called the Discriminant distance
(Dd), which overcomes some of the shortcomings of other
distance measures, and provides an easily understandable
geometrical interpretation of distance between two variables.
The Dd has values enclosed in a [0, 1) interval and it may be
mainly used to study convergent and discriminant validity,
or scale invariance, when using continuous variables.

Illustration of Shortcomings of Some
Distance Measures

We begin by showing some shortcomings of the most com-
monly used distance measures with the illustration of a spe-
cific example. Suppose that a researcher is interested in
knowing the proximity or redundancy of two variables in
a questionnaire (A and B). These two variables are measured
using 5-point Likert-type scales (from 1 to 5).

1 We will discuss later that two perfectly correlated variables may behave equally for certain statistical analyses, but this does not mean that
they are the same variables, because mean values may diverge.
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Let a and b be two vectors with J elements each, indicat-
ing the sample responses to items representing both vari-
ables. In this example, J = 10. Table 1 depicts the data.

Euclidean Distance

The first option would be the computation of Euclidean dis-
tance (Ed), which is defined as

Edða; bÞ ¼ ða� bÞT ða� bÞ
� �1=2 ¼

X

j

ðaj � bjÞ2
" #1=2

:

ð1Þ
This distancemeasure does not providemuch useful infor-

mationbecause it is fully dependent on the sample size and the
magnitude of the variables. However, we can build two addi-
tional relativeEds. The first is the sample weighted Euclidean
distance (swEd), which weights Ed by the sample size

swEd a; bð Þ ¼

P

j
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J
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75

1=2

: ð2Þ

The second is the deviation weighted Euclidean distance
(dwEd), which weights Ed by the pooled standard deviation
(rp) of both variables.

dwEd a; bð Þ ¼

P

j
ðaj � bjÞ2

" #1=2

rp
: ð3Þ

However, these modifications of the Ed do not take into
account the correlation between variables. This consider-
ation is crucial when using paired data.

Minkowski’s distance and Hellinger’s distance are com-
puted in a similar fashion (see Abdi, 2007); therefore, they
do not take into account the correlations either.

Mahalanobis Distance

Mahalanobis distance (Md) takes into account the covari-
ance of data. As Abdi (2007) explains, Md is defined
between rows of a table. The weight matrix W is obtained
as the inverse of the columns of variance-covariance matrix.

Therefore, we can denote by S the variance-covariance
matrix between the columns of Table 1, being W = S�1.
In this case, S�1 is a 10 · 10 symmetric matrix.

Mdða; bÞ ¼ ða� bÞT S�1ða� bÞ
� �1=2

: ð4Þ
Md weighs raw difference scores between variables by a

covariance matrix computed from these pairs of scores.
Therefore, it does not consider the covariance between vari-
ables, Cov(a, b) (it would be the rows instead of the col-
umns), so correlation between A and B is not taken into
account.

Pearson’s r Correlation Coefficient

Correlation coefficient r indicates the strength and direction
of a linear relationship between two random variables and it
ranges from �1 to 1. Sample correlation is computed with
the much known expression

r a; bð Þ ¼ Cov a; bð Þ
rarb

: ð5Þ

As r is a sample statistic, we may compute a confidence
interval for the estimated population parameter. Several
methods have been proposed for that calculus (see Beasley
et al., 2007), for example, the Fisher Z transformation or
bootstrapping.

In our example, both variables are highly correlated
(.87), so their association is strong and their distance is
small. However, both variables behave divergently if we
consider the mean values. Therefore, r is an incomplete dis-
tance measure because it may suggest that two variables
provide the same information or they are redundant when
actually their mean values disagree.

Cohen’s d Effect Size

Cohen’s (1988) d statistic is defined as the difference
between two mean values weighted by a standard deviation.
As Cepeda, Pashler, Vul, Wixted, and Rohrer (2006) indi-
cate, the choice of standard deviation is crucial, as it impacts
observed effect size. Statisticians differ on the optimal type
of standard deviation to use in computing d, although the
most used criterzia is to average the two standard deviations
(rpooled).

Table 1. Artificial data to illustrate the shortcomings of some distance measures

1 2 3 4 5 6 7 8 9 10 X r Cov(a, b)

Variable A 4 5 4 5 4 4 4 4 3 4 4.1 0.56 .29
Variable B 3 4 3 4 3 3 3 3 2 4 3.2 0.63

Ed swEd dwEd Md Correlation
coefficient r
(95% CI)

Cohens’ d (95% CI)

3.00 0.300 4.99 50 .87
(0.52, 0.97)

1.50
(0.99, 2.0)
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d a; bð Þ ¼ X a� X b
rpooled

: ð6Þ

Like r, d is a sample statistic and confidence intervals
can be computed, for example, using bootstrapping proce-
dures (Algina, Keselman, & Penfield, 2005) or approximate
methods (Hedges & Olkin, 1985). Reporting confidence
intervals for r and d avoid making misleading inferences
about the magnitude of the effect due to overestimation
(Voelkle, Ackerman, & Wittmann, 2007).

The problem of d is that it does not consider the covari-
ation between variables. Therefore, only by knowing d, we
would lose information regarding the proximity or separa-
tion of variables; hence, again this is an incomplete distance
measure.

The Dd

We propose a new form of evaluating distance between vari-
ables considering both mean difference and correlation. The
rationale of Dd comes from a straightforward premise: Dd
between two variables is minimum (0) if |r| = 1 and d = 0,
and Dd is maximum (1), if |r| = 0 and d!1.

Therefore, two variables with Dd = 0 provide exactly
the same information, so they are completely redundant.2

An advantage of Dd is that its absolute value ranges from
0 to 1. In addition, Dd takes into account the precision of
r and d statistics,3 so confidence intervals are considered.
Finally, Dd provides an easily understandable geometrical
interpretation using the Cartesian two-dimensional coordi-
nate system.

We depict the computation of Dd as follows.

Building the Two-Dimensional Plane

The first stage in Dd development is to build the Cartesian
two-dimensional coordinate system (Figure 1).

Horizontal lower axis represents d and vertical axis rep-
resents r. Both variables should be ranged in a (�1, 1) inter-
val. Minimum distance between variables will occur when
correlation has the highest value and standardized mean dif-
ference has the lowest. However, it would be easier to geo-
metrically interpret the distance if minimum distance occurs
when both variables have the lowest value, so |r| has to be
transformed. In addition, upper bound of |d| is infinite, so
it would also be necessary to transform |d| into a score with
an upper bound equal to (or asymptotically equal to) 1.

The diagonal D of the square is the segment that repre-
sents the highest distance between both variables. At point
(1,1), the segment has the highest length, so Dd is maxi-
mum; on the contrary, at point (0,0), the segment has the
lowest length, so Dd is minimum.

Horizontal higher axis represents the orthogonal projec-
tion of each point of D on a horizontal segment of length 1.
Dd is the length of the segment that comes from the origin
of the axis to the projection of a point located in D.

Pearson’s r and Cohen’s d Transformation

First of all, |r| has to be transformed to change its direction.
With the aim to interpret the minimum distance when |r| and
|d| have the lowest value, I have to compute r0 as

r0 a; bð Þ ¼ 1� rj j: ð7Þ
Cohen (1988) made very general recommendations

regarding how to evaluate the magnitude of the effect size
in social sciences. To evaluate the strength of association be-
tween variables, Cohen’s conventions indicate that small,
medium, and large effects occur when |r| is .1, .3, and .5,
respectively. Therefore, the equivalent conventions for r0

are .9, .7, and .5, respectively. Then, a small effect corre-
sponds to a high value of r0 (around .9), and a large effect
corresponds to a low value of r0 (around and below .5). Con-
sequently, to the extent that r0 is close to 1, the distance be-
tween variables increases, and to the extent that r0 is close to
0, the distance decreases.

In a second step, I have to transform d to d0, d0 being a
score ranged in a [0, 1) interval. I have chosen the v distri-
bution with m degrees of freedom, that is the distribution fol-
lowed by the square root of a v2 random variable.

The reason for choosing this transformation is based on
two premises.

First, I needed a function whose image was enclosed in a
[0, 1) interval. Several cumulative distribution functions per-
taining to the family of continuous distributions matched
with that requirement, such as half-normal, half-logistic,
Rayleigh, v, Maxwell, and others.

Second, I needed to consider Cohen’s conventions for d
statistic to relate the magnitude of effects between r0 and d0.

2 Note that variance, skewness, and kurtosis of both variables are the same.
3 Scale coarseness can be also considered by correcting r (see Aguinis, Pierce, & Culpepper, in press) and measurement error by correcting r

and d by reliability (Hunter & Schmidt, 2004).

Figure 1. Cartesian two-dimensional coordinate system.
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Cohen’s conventions for d indicate that small, medium, and
large effects occur when effect size is 0.2, 0.5, and 0.8,
respectively. Therefore, it was desirable that a large effect
in r and a large effect in d matched at the same point of
the Cartesian system. In addition, with the aim to put at
the same level the effects on the two Cartesian axes, conven-
tions for effect size in d0 should take up the same space over
its [0, 1) domain as the conventions for r. Consequently, the
required function to use for transforming d to d0 should be
adjusted to minimize the mean square error (MSE) between
the transformed effect size conventions for d and r (Table 2).

Functions were calibrated fixing a matched reference
point (e.g., (0.8,0.5)) with three decimals of precision, using
the quantile procedure in Mathematica 6.0. This process
facilitates the identification of parameters needed to define
the functions.

v distribution with 1.21 degrees of freedom yielded the
lowest MSE, so it was the selected final function. Because
I was only interested in searching a function with a required
form, there is no problem to admit a noninteger value for
degrees of freedom.

Figure 2 shows the form of the selected v function. Note
that this function asymptotically gets closer to the maximum
(in this case 1) to the extent that d increases. For example,
the final 10% of the distribution of values of the function
covers from 1.77 to more. This means that very large effect
sizes count in a similar way; they yield values of d0 above
0.9, that is, a great distance between variables. In addition,
50% of the distribution of values of d0 is above 0.5 (large
effect), such as the distribution of r.

Point Estimation of Dd and Confidence
Intervals

Point estimation of Dd comes from point estimates of d0 and
r0 that form the point P0(d0,r0) on the coordinate system.
P0(d0,r0) is a transformation of the original point P(d,r).
Then, I have to obtain the segment S that joins P0(d0,r0) with
origin on (0,0). Dd is obtained from the percentage of D
covered by S:

Dd a; bð Þ ¼ S=D: ð9Þ

As D is an irrational number (the diagonal of a square), I
can approximate its value using two decimals: D = 1.41.

Then, P(d, r) = P(1.497, 0.866). Consequently, P0(d0,
r0) = P0(0.828, 0.134). Therefore, S = 0.835 and
Dd(a, b) = 0.59.

I can compute a confidence interval over Dd, using con-
fidence intervals of d0 and r0, in a similar way as I have com-
puted the point estimate. Using some of the procedures
mentioned in the beginning of the paper, I have to convert
the lower and upper bounds of d and r(dl, du, rl, ru) to the
transformed values ðd 0l; d 0u; r0l; r0uÞ. It is imperative to choose
the same level of confidence for the two statistics. In addi-
tion, it is also important to note that transformation of the
lower bound of r(rl) corresponds to the upper bound of
r0ðr0uÞ, and conversely for the upper bound, because of the
opposite direction of r0. Then, I have to situate the points
Pl0ðd 0l; r0lÞ and Pu0ðd 0u; r0uÞ on the coordinate system. If I join
these two points with origin, I obtain Sl and Su. Finally, the
values (Ddl, Ddu) that form the confidence interval over Dd
are computed as I have shown in Equation 9.

To compute a 95% confidence interval, I calculated 95%
confidence intervals for r and d, using Fisher Z transforma-
tion and Hedges and Olkin’s (1985) approximate method,
respectively. Table 1 shows these estimates. By means of
the depicted transformation, I obtained the following points:
Pl0(0.61, 0.03) and Pu0(0.94, 0.48); therefore, Sl = 0.61 and
Su = 1.05. In the end, Ddl = 0.43 and Ddu = 0.75.

Figure 3 graphically illustrates the procedure.
I developed a user-friendly computer program that allows

researchers to calculateDd from r andd. The program is avail-
able free of charge and can be executed online by visiting the
following website www.upct.es/�beside/jose. As an illustra-
tion, Figure 4 includes a screen shot of the program. Users
input the observed Pearson’s correlation and Cohens’ effect
size together with their respective confidence intervals.

Finally, Dd(a, b) matches with the properties of distance
measures (Abdi, 2007):

Table 2. MSE after adjusting some cumulative distribution functionsa

d d0 (should be) v(m) Half-normal (h) Gamma (a, b) Rayleigh (r1) Exponential (k) Maxwell (r2)

0.2 0.1 0.104 0.067 0.115 0.0424 0.159 0.0146
0.5 0.3 0.303 0.325 0.26 0.237 0.229 0.18
0.8 0.5 0.500 0.500 0.500 0.500 0.500 0.500
MSE 2.82E�05 0.0017 0.0018 0.0072 0.0085 0.0216

aParameters: m = 1.21; h = 1.05; a = 0.8; b = 1.59; r1 = 0.68; k = 0.866; r2 = 0.52.

Figure 2. Chi cumulative distribution function with
m = 1.21.
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– Dd(a, a) = 0
– Dd(a, b) = Dd(b, a)
– Dd(a, b) � Dd(a, c) + Dd(c, b), c being another vec-
tor with J elements.

Conventions Regarding the Magnitude of Dd

We propose general recommendations for evaluating the
magnitude of Dd, which come from the conventions of r
and d. Point (0.5, 0.5) on D represents large effects for r
and d (remember that d0 = 0.5 is the transformation of
d = 0.8). This means that there is a large standardized mean
difference (high distance) between both variables, but at the
same time there is a large association (low distance) between

them. Therefore, I can consider its projection of Dd(0.50) as
a medium distance. To the extent that d0 decreases and r0

decreases (or r increases), the distance between variables
also decreases, because the standardized mean difference
gets smaller and association gets larger. Dd(0.30) represents
medium d and large r, so I can label this distance as a small
distance. In addition, Dd(0.10) represents small d and large
r, so I may label this combination as a very small distance.

On the contrary, the combination of medium r (.3) and
large d (0.8) (or when r0 = .7 and d0 is above 0.5) means that
standardized mean difference is large and association is med-
ium; hence, following the same prior reasoning, I label this
distance as large:Dd(0.70). Finally, when association is small
(r = .1 or r0 = .9) and d is large, the distance between vari-
ables is very large:Dd(0.9). Figure 5 illustrates the procedure.

Note that these recommendations are very general and are
only based on Cohen’s (1988) conventions. Consequently,
these have to be considered as guidelines for evaluating
the importance of Dd. Researchers are free to interpret the
magnitude of Dd in a different fashion. However, and in a
similar way to Cohen’s conventions, these magnitudes can
act as a general guide for social science research.

Applications

The main application of Dd is in the analysis of convergent
and discriminant validity. For example, in the widely used
one-dimensional reflective models, a latent variable often
underlies a number of observed variables (items). Conver-
gent validity between items is acknowledged if model meets

Figure 3. Graphically computation of Dd; point estimate
and 95% confidence interval.

Figure 4. Screen shot of computer
program that calculates Dd. The pro-
gram is available at www.upct.es/
�beside/jose.
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the principle of local independence; then conditionalizing on
that latent variable will render the observed variables statis-
tically independent. This means that items should be corre-
lated. In addition, equally reliable indicators of a latent
variable are interchangeable. Therefore, each single indica-
tor should estimate the mean, that is each indicator should
not differ in its mean value from the rest. Consequently, high
correlations between indicators are not enough to correctly
represent the latent because if indicators are interchangeable,
the selection of an indicator with a high score would distort
the true mean of the latent if the remaining indicators are
lowly scored.

To illustrate how Dd can help to analyze convergent
validity, I have used simulated data. Let us suppose that I
have four indicators underlying a one-dimensional latent
variable, and a sample of 400 individuals. Artificial data
were generated using STATA 8.0. I drew a sample from a
multivariate normal population with a vector of means
(3, 3, 3, 4), standard deviations (0.5, 0.5, 0.5, 0.5), all four
items being associated with a correlation of .9. All variables
were supposed to be measured in the same scale. Standard
procedures for evaluating the adequacy of this model
include analyses such as covariance structure analysis (LIS-
REL, TETRAD differences), sample pairwise correlations,

or standardized mean difference. Table 3 shows the results
of these analyses.

It seems clear that Item 4 does not measure as the three
remaining items. As we can see, none of the four procedures
but for Cohen’s d has been able to detect the problem. How-
ever, Cohen’s d does not take into account the covariance of
items. Recall that an effect size of about 2.1 means that more
than 98% of scores of Item 4 are above the mean of the three
items (see Cohen, 1988, p. 21). This could lead to think that
a very large difference exists between Item 4 and the rest.
Nevertheless, Dd considers the magnitude of this difference
taking into account the correlation between items. Using the
proposed conventions for Dd, we may say that the magni-
tude of distance between Item 4 and the rest is medium or
medium-large. Therefore, the high correlation between them
makes Dd not be large. This is very interesting because it
indicates that what Item 4 measures is different from the
rest, but is not so different as it would seem by only assess-
ing Cohen’s d. At this point, researchers should evaluate
why this item behaves as it does; for example, this behavior
can be indicative of a problem of halo effect or common
method bias.

Dd can also be used to study discriminant validity
between disparate measures. Using covariance structure
analysis and pairwise correlations yields the same problem
as before, that is, standardized mean difference is not taken
into account. In addition, Cohen’s d does not take into
account the correlation. Therefore, computing Dd between
disparate items in a questionnaire is at the same time a mea-
sure of convergent and discriminant validity (proximity or
separation between them).

Another potential application of Dd (certainly related
with discriminant validity) is the study of the proximity or
separation between constructs, from individual’s viewpoint.
Marketing research includes studies that analyze highly
related concepts such as perceived quality, satisfaction, dis-
confirmation, perceived value, and corporate image. Aca-
demic researchers distinguish these concepts, but often
consumers do not. For example, consumers might judge
under certain circumstances that perceived quality and satis-
faction are the same concept (Iacobucci, Grayson, &
Ostrom, 1994). Recall that all these concepts can be

Figure 5. Recommendations for evaluating the magnitude
of Dd.

Table 3. Procedures for evaluating convergent validity

LISREL TETRAD
differences

Pairwise
correlations

Cohen’s da Dd

v2:0.51 0 r(1, 2) = 0.89 d(1, 2) = 0.027 Dd(1, 2) = 0.078
Degrees of freedom: 2 r(1, 3) = 0.88 d(1, 3) = 0.012 Dd(1, 3) = 0.084

r(2, 3) = 0.89 d(2, 3) = 0.014 Dd(2, 3) = 0.077
p value: .77 r(1, 4) = 0.88 d(1, 4) = 2.170 Dd(1, 4) = 0.684
Composite reliability: 1 r(2, 4) = 0.89 d(2, 4) = 2.116 Dd(2, 4) = 0.678

r(3, 4) = 0.88 d(3, 4) = 2.145 Dd(3, 4) = 0.682
AVE: 1

Model diagnostic Good model Good model Good model Model problematic Model problematic
Convergent validity
of items

Yes Yes Yes Item 4 very problematic
(very large effect size)

Item 4 problematic
(medium-large distance)

aIt is important to note that applied researchers often do not use Cohen’s d for conducting this type of data analysis; LISREL, TETRAD,
and correlations are preferred for that purpose.
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considered as consumer attitudes, so it is perfectly plausible
that several of them are very proximal.

We have applied Dd to a real market research to study
the proximity or separation between potentially related con-
cepts. Research was designed to analyze the attitude of con-
sumers toward financial entities in a town. A total sample of
207 consumers were drawn for that purpose. Several con-
cepts were measured: perceived quality, satisfaction, discon-
firmation, and corporate image. An item representing each
concept was chosen, and it was measured using a 5-point
Likert-type scale from strongly disagree to strongly agree
(quality and satisfaction) and a semantic-differential scale
(disconfirmation and corporate image) (Table 4).

I have computed Dd for each pair of variables. Results
are shown in Table 5.

In general, the Dd between all these variables may be
considered small. This means that all variables are very
proximal from the consumer’s viewpoint. Therefore, distinc-
tion in the definition of concepts made by researchers could
be questionable, because consumer’s responses do not seem
to reflect these divergences.

Other applications of Dd can also be proposed, such as
in the context of the analysis of scale invariance and com-
mensurability between measures that come from different
rating scales.

Scale invariance is a characteristic of objects that does not
change if the length of the scale ismultipliedbya constant fac-
tor. For example, given the polynomial function f(x) = axk,
where a and k are constants, f(cx) = ckaxk = ckf(x), where c

is a constant, that is, by scaling the argument of the function
by a constant factor c, the function is rescaled by a constant
factorck. If we consider that themeasure coming fromaLikert
scale of rank R1 is a linear function that represents the punc-
tuation of each individual on the characteristics of interest,
then f(ax) = ax. In addition, we may suppose that a = 1
because the image of x is always f(x), that is,we assign a direct
meaning to the scores on the scale considered. Obviously, if
we measure the same phenomenon using a different rating
scale with R2, then scale invariance holds f(cx) = cx, where
c is a function of both ranks. Using a similar reasoning, as
the variance S2 of a sampling distribution of n data is a qua-
dratic function, it can be proved that the func-
tion gð

Pn
i¼1 f ðxÞÞ ¼ S2, where f(x) = axk, x ¼ ðxi � �xÞ,

k = 2, and a = 1/n. Therefore, if scale invariance exists, the
rescaled variance would be f(cx) = ckaxk, that is,
gð
Pn

i¼1 f ðcxÞÞ ¼ c2S2, being S2 the variance of the original
scale.

A straightforward way for testing scale invariance
between two different rating scales in the same sample of
individuals would be using coefficient of correlation r and
its confidence interval. In addition, one of these two vari-
ables should be rescaled to statistically compare both means.
It is quickly viewed that if I use Cohen’s d instead of mean
difference to generalize the application for comparing any
type of rating scale (standard deviation is now considered),
scale invariance holds if confidence intervals of r and d
include 1 and 0, respectively. Consequently, and acknowl-
edging that Dd cannot be negative, scale invariance would
exist if Dd equals zero, or in the lower bound if its confi-
dence interval is zero. Therefore, Dd can be used for evalu-
ating departures of scale invariance, taking into account a
single statistic that summarizes the information that comes
from r and d.

Limitations

Several issues have to be considered when applying Dd.
First, variables susceptible to be compared have to be

measured in the same scale, because of the requisites of
Cohen’s d computation. Nevertheless, when using scales
such as Likert-type or semantic, if both variables are mea-
sured using disparate scales, they could be transformed in
the common unit ‘‘POMP’’ (percent of maximum possible

Table 4. Measures

Source

Perceived quality
I believe this financial institution
provides an excellent service

Brady and Cronin (2001)

Satisfaction
I am satisfied with the service
provided by this company

Teas (1993)

Disconfirmation
Overall, my experience in the race
was better/worse than expected

Oliver (1980)

Corporate image
I like this bank Andreassen and

Lindestad (1998)

Table 5. Dd in a real market research example

r r0 d d0 Dd

r(1,2) = .67 r0(1, 2) = .33 d(1, 2) = 0.32 d0(1, 2) = 0.18 Dd(1, 2) = 0.27
r(1,3) = .69 r0(1, 3) = .31 d(1, 3) = 0.18 d0(1, 3) = 0.09 Dd(1, 3) = 0.23
r(1,4) = .68 r0(1, 4) = .32 d(1, 4) = 0.27 d0(1, 4) = 0.15 Dd(1, 4) = 0.25
r(2,3) = .70 r0(2, 3) = .30 d(2, 4) = 0.14 d0(2, 4) = 0.07 Dd(2, 3) = 0.22
r(2,4) = .67 r0(2, 4) = .33 d(2, 4) = 0.07 d0(2, 4) = 0.03 Dd(2, 4) = 0.23
r(3,4) = .71 r0(3, 4) = .29 d(3, 4) = 0.07 d0(3, 4) = 0.03 Dd(3, 4) = 0.21

Note. 1: Perceived quality; 2: Satisfaction; 3: Disconfirmation; and 4: Corporate image.
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score – Cohen, Cohen, Aiken, & West, 1999). This transfor-
mation neither distorts r nor distorts d, avoiding misinterpre-
tations of the effect size, yielded by the difference in rank
(Höfler, 2008). In addition, when studying scale invariance,
as I have commented, one of the variables has to be rescaled
in the same metric as the other one.

Second, and very important, the same Dd may be
obtained from very disparate (r, d) pairs. This means that
two variables with the same Dd with respect to a third var-
iable do not have to necessarily share the same correlation
and standardized mean difference. Dd is a form of summa-
rizing r and d magnitudes in a single coefficient, but first of
all, researchers must pay attention to the raw r and d scores.

Third, when applying Dd to study the proximity or sep-
aration between constructs, and convergent and discriminant
validity between measures, researchers have to note that Dd
does not replace content validity assessment. An extreme
example would be the computation of Dd for incomes and
expenses of individuals per month; Dd could be very small
in some instances, but this would not mean that income and
expenses are almost the same variable, or that there would
be poor discriminant validity between these two measures;
they are very distinct by definition. Therefore, as I have
explained, Dd may be a helpful coefficient to assess the
proximity between concepts when their definition is not
clear, and for the analysis of convergent and discriminant
validity between items measuring the same concept or mea-
suring a very similar one.
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