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Abstract. The aim of this study is to improve measurement in marketing research by constructing a new, simple, nonparametric, consistent, and
powerful test to study scale invariance. The test is called D-test. D-test is constructed using symbolic dynamics and symbolic entropy as a
measure of the difference between the response patterns which comes from two measurement scales. We also give a standard asymptotic
distribution of our statistic. Given that the test is based on entropy measures, it avoids smoothed nonparametric estimation. We applied D-test to
a real marketing research to study if scale invariance holds when measuring service quality in a sports service. We considered a free-scale as
a reference scale and then we compared it with three widely used rating scales: Likert-type scale from 1 to 5 and from 1 to 7, and semantic-
differential scale from �3 to +3. Scale invariance holds for the two latter scales. This test overcomes the shortcomings of other procedures for
analyzing scale invariance; and it provides researchers a tool to decide the appropriate rating scale to study specific marketing problems, and how
the results of prior studies can be questioned.
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Rating scales are probably the most popular measure-
ment method in marketing research. In 2002, an estimated
US$ 6.8 billion was spent on conventional marketing research
tools in the United States alone (Mast & Zaltman, 2005).
In 2007, this number grew up to US$ 12 billion (Lindstrom,
2008). A great portion of this enormous amount of money
was invested in quantitative techniques using standard ques-
tionnaires administered in written or telephone interviewing,
being rating scales the preferred method for measuring verbal
self-reports: attitudes, opinions, and intentions.

Since the first decades of the past century, social science
researchers have been searching for an ideal measurement
method that minimizes bias and maximizes utility.1 Rating
scales have been the most used measurement method since
Likert (1932) introduced his scale to measure attitudes.
However, during the last several decades, researchers have
discussed numerous concerns related to how to implement
this method. Several examples of these debates are: (1)
the proper number of response alternatives in the rating
scale; (2) the choice of verbal labels to identify the different
alternatives; (3) reliability and validity of the scales with dif-
ferent anchors; (4) the effect of incorporating a neutral point;

and (5) consumer’s preferences among the different
response formats. The scholarly discussion of the issues cre-
ated several alternatives such as semantic-differential scales
and other categorical measurement scales with limited
response alternatives. There are excellent references in the
literature that review the debate, such as Cox (1980) or
Hofmans, Theuns, and Mairesse (2007). These studies also
demonstrated numerous contradictions that have been
derived from empirical research.

In marketing research the most used rating scales are
5- and 7-point Likert-type scales. The studies of Cox (1980)
or Lissitz and Green (1975) are frequently referenced by
researchers in order to support the choice of the mentioned
Likert-type scales. Likewise, the use of semantic-differential
scales is also very widespread, because of the contribution
of prospect theory (Kahneman & Tversky, 1979) and the dis-
tinction between positive and negative emotions. However,
researchers need to know if a specific rating scale is statisti-
cally less or equally useful than other rating scale. In other
words, researchers need to analyze if scale invariance holds,
that is if themeasure of the variable of interest does not change
when the length of the scale is multiplied by a constant

1 We will use the term ‘‘utility’’ instead of ‘‘validity.’’ We agree with the viewpoint of Borsboom, Mellenbergh, and van Heerden (2004)
regarding the concept of validity and its distinction from the concept of utility. Therefore, a test is valid for measuring an attribute if (a) the
attribute exists and (b) variations in the attribute causally produce variation in the measurement outcomes. However, a valid test may be
more useful than another valid test for measuring the same attribute if it is a better representation of the measured attribute. In words, a span
and a meter are two valid forms to measure distance, but the meter is more useful than the span. There are no degrees of validity but degrees
of utility.
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factor, for example, when a scale used to measure a con-
struct in a specific study is a 10-point scale and the pro-
posed scale for measuring the same construct in other
study is a 5-point scale. We consider deviations from
scale invariance as bias, and the objective of this research
is to develop a statistical test to make this bias
quantifiable.

In this article, we construct a new, simple, nonparamet-
ric, consistent, and powerful test to compare the response
pattern that comes from a specific rating scale (a free-scale),
with the response pattern that comes from other rating
scales. We also applied the proposed test to a real marketing
research, comparing the free-scale with three widely used
rating scales: Likert-type scale from 1 to 5 and from 1 to
7, and semantic-differential scale from �3 to +3. The test
is called D-test, and it is constructed using symbolic dynam-
ics and symbolic entropy as a measure of the difference
between the response patterns. Symbolic entropy was first
introduced in the context of time series analysis in Matilla
and Ruiz (2008). We also give a standard asymptotic distri-
bution of our statistic. Given that the test is based on entropy
measures, it avoids smoothed nonparametric estimation.

The relevancy of the proposed D-test is twofold: firstly,
this test overcomes the shortcomings of other procedures for
analyzing scale invariance; and secondly, it provides
researchers a tool to decide the proper rating scale for study-
ing specific marketing problems, and how the results of
prior studies can be questioned. This latter fact is especially
important in meta-analysis.

The rest of this paper is organized as follows. In the fol-
lowing section, the notion of scale invariance is defined; this
includes a review of some procedures for testing this
assumption. The paper then details the construction of the
D-test followed by its application to a real marketing
research (service quality in a sports center) in order to illus-
trate our approach. The paper concludes with a brief discus-
sion about the implications for marketing research.

Scale Invariance

Scale invariance is a characteristic of objects that does not
change if the length of the scale is multiplied by a constant
factor. For example, given the polynomial function f(x) =
axk, where a and k are constants, f(cx) = ckaxk = ckf(x),
where c is a constant, that is, by scaling the argument of
the function by a constant factor c, the function is rescaled
by a constant factor ck.

Steven’s (1951) work showed that the response to a stim-
ulus f(x) is a power function of the evoked sensation x, so
f(x) = axk. As k = 1 for line length production and numeric
estimation (Hofmans, Theuns, Baekelandt, et al., 2007), then
ln(f(x)) = ln(a) + ln(x). If the response to the stimulus is given
in a free-scale, itwould be plausible to assume that a = 1, then
the relationship between response and evoked sensation
would be identical. If the same phenomenon is measured
usingother rating scale, then ln(f(cx)) = ln(c) + ln(a) + ln(x).
Consequently, we obtain the rescaled factor by finding c.

As it can be intuited, transformation from a 10-point
scale to a 5-point scale implies categorization bias (see
Cox (1980) for an illustration). The relevant question is
whether this potential bias is statistically significant.

In the following subsections we briefly depict some pro-
cedures to analyze scale invariance.

Direct Comparison

The first and simpler option is to make a direct comparison
between means and variances of the two scales (A and B)
normalized to the unit interval. If both statistics do not differ,
this would favor the hypothesis that scale invariance holds.

The shortcoming of this approach is that means and vari-
ances could be statistically equal, but the response pattern of
each individual could not be invariant.

In the case of the mean, we may assume that if both
means are equal, the expected value of all individual devia-
tions from scale invariance is zero. Consequently, we would
consider these deviations as a categorization error with zero
mean. The variance of this error would distort the variance
of scale B, so that the hypothesis of equality of variances
would be rejected with more assiduity. However, we
strongly believe that assuming that this categorization error
is a random variable with zero mean is not a very realistic
assumption, since this would imply that individuals would
always be capable of mapping mentally every value of the
scale A to the proper category of the scale B (the nearest
integer). In addition, this assumption would require the dis-
tribution of responses in the scale A to be uniformly distrib-
uted or perfectly symmetrical, in order to balance positive
and negative categorization errors. This latter fact is cer-
tainly difficult to assume in practice.

Therefore, by using this method we do not know if the
hypothesis of scale invariance holds simply by chance.

Structural Equation Modeling

A more sophisticated method based on the covariances of
several measurement scales can be used. Structural equation
modeling is a widely employed methodology in social sci-
ences that consider latent variables and observable indicators
(individual’s responses).

We may build the simplest reflective model relating a
nonobservable latent variable (what we want to measure)
with the observable indicator (the item measured on a rating
scale). The equation is the following: y = ke + d, being
y the value of the observable indicator, e the value of the
latent variable, k the regression coefficient that relates both
values, and d an error term. The analogy of this equation
with the equations defined for the scale invariance is quickly
viewed. In this case, it is assumed that the error term follows
a normal distribution with zero mean. Therefore, the error
term does not distort the mean value of the responses, but
increases their variance. Note that one of the strengths of
structural equation modeling is the possibility to consider
measurement error in the observable indicators.
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The previous equation may be expressed in terms
of covariance by the following expression: Var(y) =
k2Var(e) + Var(d), assuming independence on the right-hand
side of the equation. Scale invariance can be studied with four
scales, the free-scale: y1, and other three distinct rating scales:
y2, y3, and y4. Figure 1 illustrates the model.

The main advantage of structural equation modeling is
that it allows the analysis of different degrees of scale
invariance. We assume that the relationship between the
response and the evoked sensation is identical (so
k1,1 = 1). As all data are normalized to a unit interval, if
scale invariance holds, the remaining lambda parameters
should also be equal to 1. In structural equation modeling
terminology this situation is called tau-equivalent indica-
tors model. Moreover, if we also assume that measure-
ment error is different from zero (Var(d1,1) > 0), a more
restricted type of scale invariance would occur if the
remaining theta parameters are equal to Var(d1,1). We need
to fix Var(d1,1) to a specific value (see Hayduk, 1996).
This situation is known as parallel indicators model.
A detailed explanation of these models can be found in
Jöreskog and Sörbom (2001).

Model illustrated in Figure 1 is identified, so researchers
can test different models considering distinct restrictions in
the estimated parameters in order to test scale invariance
(tau-equivalent and parallel models). All these models can
be compared using the chi-square difference test in a nested
model sequence (see Yuan & Bentler, 2004).

The shortcomings of this way of testing scale invariance
are associated to the general shortcomings of the structural
equation modeling methodology (e.g., Tomarken & Waller,

2005). In general, it is desirable to count with continuous
data in order to apply maximum likelihood estimation.2

However a minimum sample size is needed in order to com-
pute the asymptotic covariance matrix and to avoid bias in
the chi-square statistic (Jackson, 2003). When data are not
continuous, asymptotic free estimation is necessary, and
requirements about sample size are much more restrictive.
In this case, the input is not a covariance matrix but a poly-
serial or polychoric correlation matrix, thus interpretation of
measurement error as a percentage of variance of the latent
variable is more complicated. This latter fact makes it diffi-
cult to fix the parameters of the free-scale for testing tau-
equivalent and parallel models.

Furthermore, this type of methodology requires that
models have to be identified, so a minimum number of indi-
cators is needed for each specific model susceptible to be
tested. For example, the model illustrated in Figure 1 is
not identified with two indicators; consequently, a simple
comparison between two scales would not be feasible.

The procedure that we introduce in this paper overcomes
some of the limitations of structural equation modeling,
being less restrictive regarding the nature of data.

D-test: Preliminaries and Notation

In this section we give some definitions and introduce the
basic notation.

Let P be the population to be studied. Let N be the num-
ber of individuals in the population P. Suppose that every
individual e 2 P is asked to evaluate some item. In order
to do so we let the individual to chose his/her own scale,
namely scale A, and afterwards we ask this individual to
evaluate the same item but with another scale, namely B.
Assume that scale A is within the interval [a1,a2] and scale
B is within the interval [b1,b2]. Denote the value of the eval-
uation of individual e in the scale A by xe and in the scale B
by ye. In order to normalize both scales to the unit interval
[0,1] we rescale as follows:

~xe ¼
xe � a1
a2 � a1

and ~ye ¼
ye � b1
b2 � b1

:

Now divide the unit interval [0,1] in k subintervals,
I1, I2, . . ., Ik, of the same length, that is

I i ¼
i� 1

k
;
i

k

� �
for every i = 1, 2, . . ., k. Denote by S = {I1, I2, . . ., Ik}.
Then every valuation ~xe and ~ye belongs to at most two
of the intervals in S. Then, we can associate to every indi-
vidual e 2 P the value (Ij, A) if ~xe 2 I j or the value (Ij, B) if
~ye 2 Ij. In order to ensure the uniqueness of this associa-
tion we impose the following condition, if ~xe 2 I j \ I jþ1

ε

2y1y 4y3y
1,1λ 2,1λ 3,1λ 4,1λ

1,1δ 2,2δ 3,3δ 4,4δ

Figure 1. Measurement model for testing scale invariance.

2 Recall that data coming from rating scales should be considered as categorical data. There exists a debate about this topic. Our view in this
paper is the following: If individuals prefer to give their responses in a 10-point scale, but they have to respond in a 5- or 7-point scale, then
data coming from these responses will be categorical. Therefore, maximum likelihood estimation in structural equation modeling should
not be used.
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(resp. ~ye 2 Ij \ Ij+1), that is ~xe ¼ j
k
(resp. ~ye ¼ j

k
), then the

associated value is (Ij, A) (resp. (Ij, B)).
We will call an element in S · {A, B} a symbol. There-

fore we can define the following map

f : P � A;Bf g ! S � fA;Bg
defined by f(e, t) = (a, t) for a 2 S and t 2 {A, B}, that is,
the map f associates to each individual e 2 P the valuation
of the item and whether e used scale A or B . We will call f
a symbolization map. In this case we will say that individ-
ual e is of (a, t)-type.

Denote by

na ¼ ]fðe;AÞ 2 P � fA;Bgj f e;Að Þ ¼ a;Að Þg;
and

ma ¼ ]fðe;BÞ 2 P � fA;Bgj f e;Bð Þ ¼ a;Bð Þg;
that is, the cardinal of the subsets of P · {A, B} formed by
all the individuals of (a, A)-type and (a, B)-type, respec-
tively. Therefore na + ma is the number of individuals of
a-type.

Also, under the conditions above, one could easily com-
pute the relative frequency of a symbol (a, t) 2 S · {A, B}
by:

pa ¼
]fðe;AÞ 2 P � fA;Bgj e is of a;Að Þ � typeg

2N
ð1Þ

and

qa ¼
]fðe;BÞ 2 P � fA;Bgj e is of a;Bð Þ � typeg

2N
: ð2Þ

Hence the total frequency of a symbol a is sa = pa+ qa.
Now under this setting we can define the symbolic

entropy of a valuation. This entropy is defined as the Sha-
non’s entropy of the k distinct symbols as follows:

h Sð Þ ¼ �
X
a2S

sa lnðsaÞ: ð3Þ

Similarly we have the symbolic entropy for the valuation
with scale A and with scale B

h S;Að Þ ¼ �
X
a2S

pa lnðpaÞ; ð4Þ

and

h S;Bð Þ ¼ �
X
a2S

qa lnðqaÞ; ð5Þ

respectively.
Symbolic entropy, h(S), is the information contained in

comparing the k symbols in S among all the individuals in P.

Construction of the Test

In this section we construct a test to detect when valuation of
the evaluated item is affected by the chosen scale with all the
machinery defined in D-test. Preliminaries and Notation sec-
tion. In order to construct the test, which is the aim of this
paper, we consider the following null hypothesis:

H0 : the scale does not affect the valuation of the item
scale invariance holdsð Þ; ð6Þ

that is,

H0 : qa ¼ pa for all a 2 S ð7Þ
against any other alternative.

Now for a symbol (a, t) 2 S · {A, B} and an individual
e 2 P we define the random variable Z(a,t)e as follows:

Z a;tð Þe ¼
1 if f e; tð Þ ¼ ða; tÞ
0 otherwise;

�
that is, we have that Z(a,t)e = 1 if and only if e is of (a, t)-
type, Z(a,t)e = 0 otherwise.

Then Z(a,t)e is a Bernoulli variable with probability of
‘‘success’’ either pa if t = A or qa if t = B, where ‘‘success’’
means that e is of (a, t) -type.

Then we are interested in knowing how many e’s
are of (a, t)-type for all symbols (a, t) 2 S · {A, B}.
In order to answer the question we construct the follow-
ing variable

Y ða;tÞ ¼
X
e2P

Z a;tð Þe: ð9Þ

The variable Y(a,t) can take the values {0, 1, 2, . . ., N}.
Then it follows that the variable Y(a,t) is the binomial random
variable

Y ða;AÞ � BðN ; paÞ ð10Þ
or

Y ða;BÞ � B N ; qað Þ: ð11Þ
Then the joint probability density function of the 2k

variables

PðY I1;Að Þ ¼ a1; . . .; Y Ik ;Að Þ ¼ ak ;Y I1;Bð Þ ¼ b1; . . . ;Y Ik ;Bð Þ ¼ bkÞ

is

a1 þ . . .þ ak þ b1 þ . . .þ bkð Þ!
a1! � � � ak !b1! . . . bk !

pa1I1 � � � p
ak
Ik
qb1I1 � � � q

bk
Ik
;

ð12Þ
where a1 +. . . + ak + b1 + . . . + bk = 2N. Consequently, the
joint distribution of the 2k variables ðY I1;Að Þ; . . .; Y Ik ;Að Þ;
Y I1;Bð Þ; . . . ; Y Ik ;Bð ÞÞ is a multinomial distribution.

The likelihood function of the distribution (Equation 12)
is:

L pI1 ; . . . ; pIk ; qI1 ; . . . ; qIk
� �
¼ 2Nð Þ!

nI1 ! . . . nIk !mI1 ! . . .mIk !
p
nI1
I1

. . . p
nIk
Ik
q
mI1
I1

. . . q
mIk
Ik

ð13Þ

and since pI1 þ . . .þ pIk þ qI1 þ . . .þ qIk ¼ 1 it follows
that the logarithm of this likelihood function remains as

ln L pI1 ; . . . ; pIk ;qI1 ; . . . ; qIk
� �� �

¼ ln
2Nð Þ!

nI1 ! . . .nIk !mI1 ! . . .mIk !

� �

þnI1 ln pI1
� �

þ . . .þnIk ln pIk
� �

þmI1 ln qI1
� �

þ . . .

þmIm lnð1�pI1� . . .�pIk �qI1� . . .�qIk�1Þ:
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In order to obtain the maximum likelihood estimators p̂a

and q̂a of pa, and qa, respectively, for all a 2 S, we solve the
following equations

@ lnðLðpI1 ; . . . ; pIk ; qI1 ; . . . ; qIk ÞÞ
@pa

¼ 0

@ lnðLðpI1 ; . . . ; pIk ; qI1 ; . . . ; qIk Þ
@qa

¼ 0 ð14Þ

for all a 2 S to get that

p̂a ¼
na

2N
; q̂a ¼

ma

2N
; ð15Þ

and thus,

ŝa ¼
na þ ma

2N
: ð16Þ

Then, under the null H0, we have that qa = pa and hence,

sa ¼ pa þ qa ¼ pa þ pa ¼ 2pa:

Therefore the likelihood ratio statistic is (see, e.g.,
Lehmann, 1986):

ki Yð Þ ¼
p
nI1
I1

. . . p
nIk
Ik
q
mI1
I1

. . . q
mIk
IkbpnI1

I1
. . . bpnIk

Ik
q̂
mI1
I1

. . . bqmIk
Ik

ð17Þ

¼
1
2

� �2N
S
nI1þmI1
I1

. . . S
nIkþmIk
Ik

nI1
2N

� �nI1 . . .
nIk
2N

� �nIk mI1
2N

� �mI1 . . .
mIk

2N

� �mIk
: ð18Þ

On the other hand, D(k) = �2ln(ki(Y)) asymptotically
follows a chi-squared distribution with k � 1 degrees of
freedom (see, for instance, Lehmann, 1986). Hence, we
obtain that the estimator bDðkÞ of D(k) is:
bD kð Þ ¼ �2 2N ln

1

2

� �
þ nI1 þ mI1ð Þ ln nI1 þ mI1

2N

	 

þ . . .

�

þ . . .þ nIk þ mIkð Þ ln nIk þ mIk

2N

	 

� nI1 ln

nI1
2N

	 

� . . .

. . .� nIk ln
nIk
2N

	 

� mI1 ln

mI1

2N

	 

� . . .� mIk ln

mIk

2N

	 
�

¼ �4N ln
1

2

� �
þ nI1 þ mI1

2N
ln

nI1 þ mI1

2N

	 

þ . . .

�

. . .þ nIk þ mIk

2N
ln

nIk þ mIk

2N

	 

� nI1
2N

ln
nI1
2N

	 

�

. . .� nIk
2N

ln
nIk
2N

	 

� mI1

2N
ln

mI1

2N

	 

� . . .� mIk

2N
ln

mIk

2N

	 
�

¼ 4N bh Sð Þ � bh S;Að Þ � bh S;Bð Þ � ln
1

2

� �� �
: ð19Þ

Therefore we have proved the following theorem.
Theorem 1. Let P be a population of cardinality N such

that each individual e 2 P evaluates a fixed item. Assume
that each individual gives his/her valuation in scales
A and B. Denote by h(S), h(S, A), and h(S, B) the total sym-
bolic entropy of the valuation, of the valuation with scale A,
and of valuation with scale B, respectively, as defined in

Equation 3. If the valuation with scale A does not differ with
the valuation with scale B, then

D kð Þ ¼ 4N

�
h Sð Þ � h S;Að Þ � h S;Bð Þ � ln

1

2

� ��
ð20Þ

is asymptotically v2
k�1 distributed.

Let a be a real number with 0 � a � 1. Let v2
a be such

that

P v2
k�1 > v2

a

� �
¼ a:

Then the decision rule in the application of the D-test at
a 100(1�a)% confidence level is:

If 0 � DðkÞ � v2
a AcceptH0

OtherwiseRejectH0

: ð21Þ

Properties of the D-test

Next we prove that theD(k) test is consistent for a wide vari-
ety of alternatives to the null. This is a valuable property
since the test will asymptotically reject that the valuation
with scale A does not differ from the valuation with
scale B whenever this assumption is not true. We will denote
by bDðkÞ the estimator of D(k). The proof of the following
theorem can be found in Appendix.

Theorem 2. If the valuation with scale A differs from the
evaluation with scale B, then

lim
N!1

Pr bD kð Þ > C
	 


¼ 1 ð22Þ

for all 0 < C < 1, C 2 R.
Since Theorem 1 implies D(k) ! +1 with probability

approaching 1 whenever the valuations differ from each
other, then upper-tailed critical values are appropriated.

It is important to note, from a practical point of view, that
the researcher has to decide upon the parameter k in order to
compute symbolic entropy and therefore, to calculate the
D(k) statistic. Fortunately, this decision can be easily con-
ducted. Note that N should be larger than the number of
symbols (2k).

Moreover, when the v2 is applied in practice, and all the
expected frequencies are 5, the limiting tabulated v2 distribu-
tion gives, as a rule, the value v2

a with an approximation suf-
ficient for ordinary purposes (see chap. 10 of Rohatgi
(1976)). For this reason, we require to work with data sets
containing at least 10k.

Furthermore, we suggest to take k as the number of
response alternatives of the scale with the lowest rank,
namely l. The rationale of this decision is straightforward;
by using this rule we ensure that all the symbols may occur.
Otherwise if k � l, there might exist a symbol a 2 S such
that any valuation of the item in this scale does not belong
to a and therefore a does not occur, while in the scale with
more possible responses a occurs. This would lead to a
rejection of the null even when it is true, in finite sample
sizes.
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Empirical Application

We applied D-test to a real marketing research. The aim of
the study was to test if scale invariance holds when mea-
suring service quality in a sports service. Measuring ser-
vice quality has been a very relevant topic in the
academic marketing literature during the last three decades.
The advent of international quality standards, such as the
International Organisation for Standards (ISO) 9000 series
and the European Foundation for Quality Management
(EFQM) model, has been a significant development in
quality management.

We collected a random sample of 212 customers of a
sports center placed in a Spanish city. Data were collected
during the spring of 2008 by personal interview. Business
and marketing students had been previously trained for this
task. Individuals had to evaluate service quality using a lin-
guistic term and then a numeric value. When they indicated
the numeric value, they had to indicate in which scale this
value had meaning. This was taken as the free-scale. Conse-
quently, responses would not be restricted to a categorical
scale proposed by the researcher. In this situation, individu-
als responded in the scale that fitted with their preferences,
minimizing their psychological costs (Ferrando, 2003; Weng
& Cheng, 2000).

Then, after two questions regarding other variables, the
interviewer returned to inquire about service quality using
the following expression: ‘‘You have indicated that your ser-
vice quality perception was XXX (the interviewer used the
same linguistic term that the consumer had used previously),
so how would you represent that valuation on the following
scales?’’ (semantic-differential scale from �3 to +3, Likert-
type scale from 1 to 5 and from 1 to 7). Therefore, by sep-
arating the questions about service quality in groups, we
tried to minimize the possibility of appearance of depen-
dency between numerical responses. We wanted to get a
conditional independent model, as Figure 1 illustrates.

Consumers preferred to give their responses in continu-
ous scales: from 1 to 10, and from 0 to 10. The percentage
of responses was 63.2 and 36.8, respectively. We say ‘‘con-
tinuous’’ because they often used decimal numbers to eval-
uate service quality. All these responses were transformed to
a unit [0,1] interval. This was the free-scale. The remaining
data derived from the other rating scales were also
transformed.

We appliedD-test running a simpleMathematica 6.0 pro-
gram. This program is available upon request. We achieved
several pairwise comparisons between the responses derived
from the free-scale and the other three rating scales. Results

are shown in Table 1. Then, we reject the hypothesis of scale
invariance for the comparison between the free-scale and the
Likert-type scale from 1 to 5. However, we cannot reject the
hypothesis in the remaining comparisons. Consequently,
scale invariance holds when responses are taken in a 7-point
scale (Likert-type scale from 1 to 7 and semantic-differential
scale from �3 to +3).

Implications for Marketing Research

We have constructed a new, simple, nonparametric, consis-
tent, and powerful test to analyze scale invariance in market-
ing research. The use of rating scales in marketing is very
widespread, consequently D-test provides researchers a tool
to decide the appropriate rating scale to study specific mar-
keting problems, and how the results of prior studies can be
questioned. Several implications deserve to be highlighted:

Firstly, scale invariance has to be a necessary condition
to use a categorical rating scale, in order to make the cate-
gorization error negligible. We provide a test that overcomes
the shortcomings of other procedures for analyzing this
important concern. D-test requires fewer assumptions than
the direct comparison method or structural equation model-
ing. The main requirement of D-test is to work with data
sets containing at least 10k, that is, sample size has to be
10 times the number of subintervals. As the number of sub-
intervals has to be fixed by the researcher to the rank of the
scale with the fewest number of alternatives of response,
then this requirement is not very demanding.

Secondly, we stress the necessity of replication. Scale
invariance should be studied in other services and using
other attitudinal variables. This is a necessary condition to
provide a general recommendation about the effect of mea-
suring attitudinal variables. By knowing these effects, meta-
analysis should be reconsidered. For example, are two
Cohen’s d effect sizes commensurable when they come from
two distinct rating scales?

Thirdly, verbal labels may interact with numerical
responses (Javaras & Ripley, 2007; Saris & Gallhofer,
2007). Note that we have compared the free-scale with three
rating scales without verbal labels. It would be very interest-
ing for further research to accomplish the same study using
verbal labels for the rating scales. As interaction may occur,
D-test could yield different results, and probably the hypoth-
esis of scale invariance would be rejected with more assidu-
ity. This research scenario would be more realistic, because
almost all rating scales used in management and marketing

Table 1. Results of the empirical application

Comparisona D-test Subintervals (k)
Chi-square cutoff
values (95%) Decision on H0

A–B 25.26 5 9.48 Reject
A–C 12.49 7 12.59 Accept
A–D 2.42 7 12.59 Accept

Note. aFree-scale (A); Likert-type scale from 1 to 5 (B); Likert-type scale from 1 to 7 (C); Semantic-differential scale from �3 to +3 (D).
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research are labeled with verbal terms (good-bad, very satis-
fied-very unsatisfied, strongly agree-strongly disagree, etc.).
Moreover, further research should deepen into the interac-
tion of verbal labels with numerical responses using the
fuzzy logic approach.

Fourthly, it is important to keep in mind that the data are
originated from the interaction of the scale and the person
responding on the scale. This means that in another sample,
the conclusions can be totally different. Especially this
feature is why people should test for scale invariance in
each sample separately, and why the D-test is of crucial
importance.3

Finally, findings from our empirical example have
showed that consumers in this specific sample used a com-
mon framework to evaluate service quality (the 10-point
scales). It seems plausible that this type of scale will also
be preferred for judging other related variables, as, for exam-
ple, consumer satisfaction. We might think data that come
from these scales as continuous, and this could lead
researchers to reconsider some assumptions of the latent var-
iable approach, that is attitudes are latent variables but prob-
ably they are not ‘‘scale-free.’’ We mean that in some
cultural contexts, attitudes may be continuously distributed
in a restricted rank in the mind of the consumer: from
0 or 1 to 10, and they are not varying in the (�1,1) inter-
val. Fortunately, D-test can successfully deal with a mixture
of continuous and categorical data because of its nonpara-
metric nature.
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Fundación Séneca of Región de Murcia. Jose A. Martı́nez
was partially supported by Fundación Séneca of Región
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Appendix

Proofs

Proof of Theorem 2
Proof. First notice that the estimatorsbh S;Að Þ ¼ �

X
a2S
bpa lnðbpaÞ

bh S;Bð Þ ¼ �
X
a2S
bqa lnðbqaÞ

bh Sð Þ ¼ �
X
a2S
bsa lnðbsaÞ ð23Þ

of h(S, A), h(S, B) and h(S), respectively, where bpa ¼ na
2N
;bqa ¼ ma

2N
, and bsa ¼ naþma

2N
are consistent because p lim

N!1bpa ¼ pa;p lim
N!1

bqa ¼ qa, andp lim
N!1

bsa ¼ sa and hence

p lim
N!1

bh S;Að Þ ¼ hðS;AÞ

p lim
N!1

bh S;Bð Þ ¼ hðS;BÞ

p lim
N!1

bh Sð Þ ¼ hðSÞ ð24Þ

Denote by � kð Þ ¼ h Sð Þ � h S;Að Þ � h S;Bð Þ � lnð1
2
Þ

and recall that

� kð Þ ¼ �
X
a2S
ðpa þ qaÞ lnðpa þ qaÞ

þ
X
a2S

pað Þln pað Þ þ
X
a2S

qað Þ ln qað Þ

� ln
1

2

� �
ð25Þ

Since
P
a2S

pa ¼
1

2
, under the null, that is, when pa = qa for

all a 2 S, it follows that

� kð Þ ¼ �2
X
a2S

pa lnð2paÞ þ 2
X
a2S

pa ln pað Þ � ln
1

2

� �

¼ �2
X
a2S

pa ln 2ð Þ � 2
X
a2S

pa ln pað Þ

þ 2
X
a2S

pa ln pað Þ � ln
1

2

� �

¼ � ln 2ð Þ � ln
1

2

� �
¼ 0 ð26Þ

Otherwise, that is, when Hl holds, and taking into
account that �ln(x) > 1 � x we have that

� kð Þ ¼ �
X
a2S
ðpa þ qaÞ lnðpa þ qaÞ

þ
X
a2S

pað Þ ln pað Þ þ
X
a2S

qað Þ ln qað Þ � ln
1

2

� �
>

¼
X
a2S
ðpa þ qaÞð1� pa � qaÞ

�
X
a2S

pað1� paÞ �
X
a2S

qað1� qaÞ þ
1

2

¼ �
X
a2S
ðpa þ qaÞ

2 þ
X
a2S

p2a þ
X
a2S

q2a þ
1

2

¼ �2
X
a2S

paqa þ
1

2
: ð27Þ

Now, since
P
a2S

pa ¼
1

2
¼
X
a2S

qa we have that

1

4
¼
X
a2S

pa

X
a2S

qa ¼
X
a2S

paqa

þ
X
a6¼b

paqb �
X
a2S

paqa ð28Þ

and thus,

2
1

4
¼ 1

2
� 2

X
a2S

paqa: ð29Þ

Therefore, under H1, by (27) and (29) we get that D(k) >
0.

Let 0 < C < 1 with C 2 R and take N large enough
such that

C

2N
< DðkÞ: ð30Þ

Then since D(k) = 2ND(k) it follows that

Pr½bD kð Þ > C� ¼ Pr b� kð Þ > C

2N

� �
ð31Þ

Therefore, by (30) and (31) we get that

lim
N!1

Pr bD kð Þ > C
	 


¼ 1

as desired. h
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