Skip to content

Ciencia sin miedo

José A. Martínez

Menu
  • Sobre mí
  • Blog
  • Papers
  • Impacto
  • Libros
  • CONGRESOS
  • Dirección
  • Apariciones en podcast
  • Proyectos
  • Revisor
  • Productividad en baloncesto
  • CALIDAD AIRE
  • STARS FOR WORKERS
  • PROMETEO GRID
  • MUSEO 1980-2011
Menu

BÚSQUEDA DE SOLUCIONES (V): MÉTODO DE LA POSICIÓN FALSA

Publicada el 25 de abril de 201925 de marzo de 2025 por martinezjose

Una variante del método de la secante es el método de la posición falsa (Regula Falsi), que básicamente ejecuta el procedimiento de la secante pero cambiando levemente el algoritmo para que entre dos puntos de dos iteraciones sucesivas siempre se encuentra la solución, de forma análoga a como ocurre con el método de la bisección. Lo haremos, como siempre, desde el punto de vista práctico, y siguiendo a Burden, Faires & Burden (2017).

Función de partida

Emplearemos la misma función que en los ejemplos anteriores, donde se relaciona la inversión en publicidad con los beneficios.

f_ceronegativo:ev(funcion,x=-0.03297097167558977), numer; f_ceropositivo:ev(funcion,x=3.03297097167559), numer; plot2d([[discrete, [[-0.0329709716755897,f_ceronegativo], [3.03297097167559, f_ceropositivo]]], funcion],[x,-1,4],[y,-3,3], [xlabel, «Inversión en publicidad (miles de euros)»], [ylabel, «Beneficios (miles de euros)»], [style, points, lines], [color, red, green], [legend, false]);

Método de la posición falsa

(1) Objetivo: Aproximarse numéricamente a la solución p de una función , tal que

(2) Condiciones: La función debe ser continua en el intervalo considerado.

(3) Descripción rápida: Partimos del método de la secante:

Para calcular p2 empleamos la fórmula anterior (tras proveer las semillas p0 y p1). Sin embargo, para calcular p3, usaremos los valores (p2,p1,f(p2),f(p1)) sólo si f(p2) y f(p1) tienen signo opuesto. Si ambos tiene el mismo signo, entonces en lugar del par (p1,f(p1)), escogemos (p0,f(po)). Y se sigue ese mismo criterio para el resto de iteraciones.

(4) Convergencia: Un criterio suficiente (pero no necesario) para que lo haga es que:

Si se cumple la fórmula anterior cuando está en un intervalo alrededor de la raíz entonces la solución converge en cualquier punto de ese intervalo. Para emplear este criterio, hemos de añadir el requerimiento de que la función sea dos veces derivable.

Normalmente, el método de la posición falsa converge de forma más lenta que el de Newton y el de la secante.

(5) Estimación del error: Hay diversas opciones, aunque una de las más recomendables es el error relativo:

Implementación en Maxima

Vamos a implementar el algoritmo partiendo de los dos valores con los que inicíabamos el método de la bisección: [2.5,3.5], que actúan como las primeras semillas en el método de la posición falsa, y vamos a adaptar en Maxima la propuesta de Ramírez (2008):

falsapos(arg):=block([a:arg[1],b:arg[2],f:arg[3],xm], xm:(a*ev(f,x=b)-b*ev(f,x=a))/(ev(f,x=b)-ev(f,x=a)), if (ev(f,x=xm)*ev(f,x=a)<0) then [a,xm,f] else [xm,b,f] ); ini:[2.5,3.5,-(x^2)+(3*x)+0.1]; for i:1 thru 10 do (print(ini[1]),ini:falsapos(ini));

Y nos genera estos resultados:

2.5 2.95 3.021739130434783 3.031481481481481 3.03277399056109 3.03294493097818 3.032967529289182 3.032970516620634 3.032970911521146 3.032970963723678

Para trabajar un poco estos procedimientos, los estudiantes pueden intentar programar una rutina con Maxima donde se codifiquen los procedimientos de Newton, secante y posición falsa, y comparar las aproximaciones.

Conclusión

En este post hemos explicado brevemente en qué consiste el método de la posición falsa. Burden, Faires & Burden (2017) no recomiendan por lo general este método, pero no deja de ser interesante para trabajar las rutinas de programación y para entender los diferentes procedimientos numéricos de búsquedas de raíces.

Category: METODOLOGÍA DE INVESTIGACIÓN

Navegación de entradas

← VALORES SUPREMOS COMO DISCURSO MANIPULADOR
ALGUNAS CONSIDERACIONES EN LA ESTIMACIÓN DEL RENDIMIENTO POR MINUTO EN BALONCESTO (I). →

ENTRADAS RECIENTES

  • DESCLASIFICACIÓN DE LA CIA: EFECTO DE LA RADIOFRECUENCIA SOBRE LA HORMONA DE CRECIMIENTO EN RATAS
  • MEDIACIÓN Y MODERACIÓN: PROCESS VS MODELOS DE ECUACIONES ESTRUCTURALES
  • COLORES MENOS SATURADOS PARA QUE EL PRODUCTO PAREZCA MÁS SOSTENIBLE
  • LA REGULACIÓN SOBRE ETIQUETADO Y PUBLICIDAD DE PRODUCTOS AZUCARADOS FUNCIONA EN CHILE
  • ANTENAS DE TELEFONÍA MÓVIL Y ELA

Temáticas del blog

  • BALONCESTO Y RENDIMIENTO DEPORTIVO
  • FÍSICA Y BIOLOGÍA
  • FRAUDE Y EXPLOTACIÓN LABORAL
  • MARKETING Y MANAGEMENT
  • METODOLOGÍA DE INVESTIGACIÓN
  • SALUD Y MEDIO AMBIENTE
  • BALONCESTO Y RENDIMIENTO DEPORTIVO
  • FÍSICA Y BIOLOGÍA
  • FRAUDE Y EXPLOTACIÓN LABORAL
  • MARKETING Y MANAGEMENT
  • METODOLOGÍA DE INVESTIGACIÓN
  • SALUD Y MEDIO AMBIENTE

  • Países al servicio de empresas: 30/06/2019
  • Contaminación electromagnética: efectos sobre la salud e intereses económicos: 19/06/2018
  • Historia de la empresa Alta Gracia Apparel: 08/01/2018
  • Gobiernos contra personas. Los agentes 2,4-D, 2,4,5-T: The Poison Papers: 05/10/2017
  • Disulfuro de carbono: Viscosa, el silencio de la industria: 26/09/2017
  • El efecto placebo: 24/07/2017
  • Glifosato: El veneno mortal de Monsanto: 27/06/2017
  • La historia no contada de Nike. El verdadero rostro de la globalización: 16/05/2017
  • El informe (2016/2140(INI)): El oscuro silencio de las marcas: 02/05/2017
  • La pérdida de identidad: Naming Rights; ¿se puede vender todo?: 07/03/2017
  • Sugargate: El imperio del oro blanco: 30/01/2017
  • Control social y manipulación de masas: 19/12/2016
  • Lo que la industria textil esconde: 23/11/2016

© 2025 Ciencia sin miedo | Funciona con Minimalist Blog Tema para WordPress