(#438).TEORÍA DE PROBABILIDAD E INFERENCIA ESTADÍSTICA SEGÚN ARIS SPANOS (IIIe)

[MONOTEMA]  Avanzamos con el quinto apartado del tercer capítulo de Probability Theory and Statistical Inference, de Aris Spanos.

Parámetros y momentos

Además del histograma de la distribución de datos observados, también disponemos de ciertos números que caracterizan la distribución como la media o la varianza. Esos valores numéricos están relacionados con los momentos de la distribución, que son esperanzas matemáticas de ciertas funciones de la variable aleatoria , genéricamente denotadas por .

Si escogemos diferentes funciones  obtendremos diferentes momentos de la distribución. Por ejemplo:

Media 

Para variables continuas:

Para variables discretas:

Varianza

Una forma conveniente de calcular los momentos de una distribución es a través de la función generatriz de momentos (mgf), donde

Para variables aleatorias discretas las integrales se vuelven sumatorios.

Por ejemplo, para una variable aleatoria X que sigue una distribución de Poisson:

Dado que: 

Entonces:

A partir de los momentos de la distribución se puede estudiar la asimetría y el apuntamiento. De este modo, podemos caracterizar la forma de la distribución a partir de los momentos.

Todos los posts relacionados
[raw]
[/raw]
image_pdfimage_print

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *